Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[1-(3,4-Dichlorophenyl)ethyl]-1,3thiazinane-2-thione

Fu-Feng Yan^a* and Chong-Jia Liang^b

^aProvincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and ^bHenan Sports School, Zhengzhou 450044, People's Republic of China Correspondence e-mail: yanfuſeng@yahoo.cn

Received 28 October 2009; accepted 3 November 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.085; data-to-parameter ratio = 19.5.

In the title compound, $C_{12}H_{13}Cl_2NS_2$, the thiazinane ring adopts a half-boat conformation. An intramolecular $C-H\cdots S$ hydrogen bond is observed. In the crystal structure, centro-symmetrically related molecules interact through an aromatic $\pi-\pi$ stacking interactions, with a centroid–centroid separation of 3.790 (2) Å.

Related literature

For the crystal structures of related thiazinane compounds, see: Kálmán, *et al.* (1977); Peng & Wu (2009). For the biological activity of thiazinane-containing compounds, see: Soloway *et al.* (1978); Tomizawa *et al.* (1995). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data C₁₂H₁₃Cl₂NS₂

 $M_r=306.25$

	Monoclinic, $C2/c$	Z = 8
	a = 13.6003 (13) Å	Mo $K\alpha$ radiation
	b = 6.7270(7) Å	$\mu = 0.79 \text{ mm}^{-1}$
	c = 29.149 (3) Å	T = 113 K
	$\beta = 101.417 \ (4)^{\circ}$	$0.14 \times 0.12 \times 0.08 \text{ mm}$
	V = 2614.1 (5) Å ³	
	Data collection	
	Rigaku Saturn CCD area-detector	11612 measured reflections
	Absorption correction: multi-scan	2527 reflections with $I > 2\sigma(I)$
	(CrystalClear; Rigaku, 2005)	$R_{\rm int} = 0.048$
	$T_{\rm min} = 0.897, \ T_{\rm max} = 0.939$	int
of	Refinement	
rts	$R[F^2 > 2\sigma(F^2)] = 0.035$	155 parameters
	$wR(F^2) = 0.085$	H-atom parameters constrained
	S = 1.07	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
		r max

Table 1

3029 reflections

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C5-H5···\$1	1.00	2.48	3.068 (2)	117

 $\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^2$

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2386).

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Kálmán, A., Argay, G., Riba'r, B. & Toldy, L. (1977). Tetrahedron Lett, 18, 4241–4244.
- Peng, Y. & Wu, L. (2009). Acta Cryst. E65, 0784.
- Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soloway, S. B., Henry, A. C., Kollmeyer, W. D., Padgett, W. M., Powell, J. E., Roman, S. A., Tiemann, C. H., Corey, R. A. & Horne, C. A. (1978). *Nitromethylene heterocycles as insecticides*. In *Pesticide and Venom Neurotoxicology*, edited by D. L. Shankland, R. M. Hollingworth & T. Smyth Jr, pp. 153–158. New York: Plenum Press.
- Tomizawa, M., Otsuka, H., Miyamoto, T. & Yamamoto, I. (1995). *J. Pesticide Sci.* **20**, 49–56.

supplementary materials

Acta Cryst. (2009). E65, o3067 [doi:10.1107/S1600536809046352]

3-[1-(3,4-Dichlorophenyl)ethyl]-1,3-thiazinane-2-thione

F.-F. Yan and C.-J. Liang

Comment

The 1,3-thiazinane ring is an important group in organic chemistry, as many compounds containing this groups possess a broad spectrum of biological activities (Soloway *et al.*, 1978; Tomizawa *et al.*, 1995). Herein, we report the crystal structure of the title compound, 3-[1-(3,4-dichlorophenyl)ethyl]-1,3-thiazinane-2-thione.

In title compound (Fig. 1), all bond lengths and angles are normal and in good agreement with those reported previously for the related compounds 2-phenylimino-1,3-thiazine (Kálmán, *et al.*, 1977) and (Z)-(1,3-thiazinan-2ylideneamino)formonitrile (Peng & Wu, 2009). The thiazinane ring adopts a half boat conformation, with atom C3 displaced by 0.685 (2) Å from the plane (p1) formed by S2, N1, C1, C2 and C4 [maximum least squares plane deviation 0.040 (3) Å for N1]. The ring puckering parameters of the thiazinane ring are q2 = 0.512 (2) Å, θ = 130.1 (3)° and φ = 57.12 (2)° (Cremer & Pople, 1975). The dihedral angle between the benzene ring (C7—C12) and plane p1 is 84.18 (3)°. The molecular conformation is stabilized by an intramolecular C—H···S hydrogen bond (Table 1). In the crystal structure, centrosymmetrically related molecules at (*x*, *y*, *z*) and (-*x*, -*y*, -*z*) are linked by an aromatic π - π stacking interaction involving the benzene rings, with a centroid-to-centroid separation of 3.790 (2) Å.

Experimental

A solution of 1,3-thiazinane-2-thione (1.33 g, 10 mmol) and sodium hydride (0.3 g) in anhydrous acetonitrile (20 ml) was added dropwise over a period of 10 min to a solution of 1,2-dichloro-4-(1-chloroethyl)benzene (2.10 g, 10 mmol) in acetonitrile (10 ml) at 273 K. The mixture was stirred at 353 K for 3 h. The solvent was removed and the residue was purified by flash chromatography (eluted with 5:1 v/v cyclohexane/dichloromethane) to give title compound as a white solid (2.66 g, 87% yield). Single crystals suitable for X-ray measurements were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.95-1.00 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level.

3-[1-(3,4-Dichlorophenyl)ethyl]-1,3-thiazinane-2-thione

Crystal data

$C_{12}H_{13}Cl_2NS_2$	$F_{000} = 1264$
$M_r = 306.25$	$D_{\rm x} = 1.556 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 7182 reflections
a = 13.6003 (13) Å	$\theta = 2.3 - 27.5^{\circ}$
b = 6.7270 (7) Å	$\mu = 0.79 \text{ mm}^{-1}$
c = 29.149(3) Å	<i>T</i> = 113 K
$\beta = 101.417 \ (4)^{\circ}$	Platelet, colourless
$V = 2614.1 (5) \text{ Å}^3$	$0.14 \times 0.12 \times 0.08 \ mm$
Z = 8	

Data collection

Rigaku Saturn CCD area-detector diffractometer	3029 independent reflections
Radiation source: rotating anode	2527 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.048$
T = 113 K	$\theta_{\text{max}} = 27.8^{\circ}$
ω scans	$\theta_{\min} = 2.9^{\circ}$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$h = -17 \rightarrow 17$
$T_{\min} = 0.897, T_{\max} = 0.939$	$k = -8 \rightarrow 8$
11612 measured reflections	$l = -37 \rightarrow 36$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.0402P)^2 + 0.4571P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
3029 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
155 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.60316 (4)	0.10311 (6)	0.452969 (16)	0.02326 (13)
C12	0.63526 (3)	0.55467 (7)	0.429381 (15)	0.02298 (13)
S1	0.55056 (4)	0.60336 (7)	0.693068 (19)	0.02744 (14)
S2	0.75483 (4)	0.70607 (7)	0.725845 (17)	0.02484 (13)
N1	0.69926 (10)	0.4226 (2)	0.66046 (5)	0.0155 (3)
C1	0.66962 (14)	0.5552 (3)	0.68892 (6)	0.0177 (4)
C2	0.80510 (13)	0.3723 (3)	0.66064 (7)	0.0189 (4)
H2A	0.8097	0.3130	0.6300	0.023*
H2B	0.8277	0.2709	0.6851	0.023*
C3	0.87453 (14)	0.5495 (3)	0.66958 (7)	0.0256 (4)
H3A	0.9428	0.5094	0.6662	0.031*
H3B	0.8507	0.6541	0.6461	0.031*
C4	0.87848 (15)	0.6317 (3)	0.71811 (7)	0.0281 (5)
H4A	0.9241	0.7479	0.7232	0.034*
H4B	0.9056	0.5294	0.7416	0.034*
C5	0.62405 (13)	0.3052 (2)	0.62764 (6)	0.0162 (4)
Н5	0.5563	0.3438	0.6331	0.019*
C6	0.63753 (15)	0.0842 (3)	0.63832 (7)	0.0224 (4)
H6A	0.7011	0.0391	0.6309	0.034*
H6B	0.5820	0.0101	0.6193	0.034*
H6C	0.6382	0.0613	0.6716	0.034*
C7	0.62876 (13)	0.3644 (3)	0.57774 (6)	0.0168 (4)
C8	0.61792 (13)	0.2249 (3)	0.54197 (6)	0.0172 (4)
H8	0.6098	0.0885	0.5488	0.021*
C9	0.61883 (13)	0.2827 (3)	0.49638 (6)	0.0163 (4)
C10	0.63158 (12)	0.4809 (3)	0.48584 (6)	0.0167 (4)
C11	0.64194 (14)	0.6213 (3)	0.52126 (7)	0.0208 (4)
H11	0.6504	0.7575	0.5144	0.025*
C12	0.63994 (14)	0.5635 (3)	0.56657 (6)	0.0197 (4)
H12	0.6463	0.6612	0.5905	0.024*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic	displacement	parameters	$(Å^2)$
--------	--------------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0312 (3)	0.0223 (2)	0.0161 (2)	-0.00385 (19)	0.00449 (19)	-0.00435 (18)
Cl2	0.0274 (3)	0.0267 (2)	0.0152 (2)	0.00102 (19)	0.00507 (19)	0.00504 (18)
S1	0.0251 (3)	0.0273 (3)	0.0333 (3)	0.0055 (2)	0.0140 (2)	-0.0023 (2)

supplementary materials

S2	0.0338 (3)	0.0205 (2)	0.0181 (3)	0.0007 (2)	-0.0003 (2)	-0.00394 (18)
N1	0.0150 (7)	0.0191 (7)	0.0123 (8)	0.0016 (6)	0.0023 (6)	-0.0010 (6)
C1	0.0246 (9)	0.0159 (8)	0.0127 (9)	0.0017 (7)	0.0038 (7)	0.0034 (7)
C2	0.0166 (9)	0.0248 (9)	0.0158 (10)	0.0034 (7)	0.0046 (7)	-0.0008 (7)
C3	0.0190 (9)	0.0317 (10)	0.0259 (11)	-0.0019 (8)	0.0040 (8)	0.0052 (9)
C4	0.0245 (10)	0.0281 (10)	0.0279 (12)	-0.0067 (8)	-0.0038 (8)	0.0002 (8)
C5	0.0171 (8)	0.0185 (9)	0.0126 (9)	-0.0007 (7)	0.0016 (7)	-0.0002 (7)
C6	0.0307 (10)	0.0215 (9)	0.0152 (10)	-0.0041 (8)	0.0046 (8)	0.0015 (7)
C7	0.0146 (8)	0.0201 (8)	0.0151 (9)	0.0014 (7)	0.0018 (7)	0.0004 (7)
C8	0.0172 (8)	0.0163 (8)	0.0176 (10)	-0.0008 (7)	0.0024 (7)	0.0000 (7)
C9	0.0144 (8)	0.0197 (9)	0.0145 (9)	-0.0006 (7)	0.0022 (7)	-0.0039 (7)
C10	0.0153 (8)	0.0224 (9)	0.0125 (9)	0.0021 (7)	0.0028 (7)	0.0029 (7)
C11	0.0252 (10)	0.0162 (9)	0.0201 (10)	0.0010(7)	0.0027 (8)	0.0017 (7)
C12	0.0227 (9)	0.0192 (9)	0.0160 (10)	0.0016 (7)	0.0011 (7)	-0.0023 (7)

Geometric parameters (Å, °)

Cl1—C9	1.7317 (18)	С5—С7	1.522 (2)
Cl2—C10	1.7292 (18)	C5—C6	1.522 (2)
S1—C1	1.6789 (19)	С5—Н5	1.0000
S2—C1	1.7430 (19)	С6—Н6А	0.9800
S2—C4	1.811 (2)	С6—Н6В	0.9800
N1—C1	1.334 (2)	С6—Н6С	0.9800
N1—C2	1.478 (2)	С7—С8	1.389 (2)
N1—C5	1.483 (2)	C7—C12	1.393 (2)
C2—C3	1.511 (3)	C8—C9	1.387 (2)
C2—H2A	0.9900	С8—Н8	0.9500
C2—H2B	0.9900	C9—C10	1.387 (2)
C3—C4	1.510 (3)	C10-C11	1.386 (2)
С3—НЗА	0.9900	C11—C12	1.382 (3)
С3—Н3В	0.9900	C11—H11	0.9500
C4—H4A	0.9900	C12—H12	0.9500
C4—H4B	0.9900		
C1—S2—C4	106.42 (9)	N1—C5—H5	107.4
C1—N1—C2	124.42 (15)	С7—С5—Н5	107.4
C1—N1—C5	120.18 (15)	С6—С5—Н5	107.4
C2—N1—C5	115.30 (13)	С5—С6—Н6А	109.5
N1—C1—S1	126.05 (14)	С5—С6—Н6В	109.5
N1—C1—S2	121.84 (14)	H6A—C6—H6B	109.5
S1—C1—S2	112.08 (10)	С5—С6—Н6С	109.5
N1—C2—C3	113.25 (15)	Н6А—С6—Н6С	109.5
N1—C2—H2A	108.9	H6B—C6—H6C	109.5
С3—С2—Н2А	108.9	C8—C7—C12	118.30 (17)
N1—C2—H2B	108.9	C8—C7—C5	121.49 (15)
С3—С2—Н2В	108.9	C12—C7—C5	120.16 (16)
H2A—C2—H2B	107.7	C9—C8—C7	120.70 (16)
C4—C3—C2	110.84 (16)	С9—С8—Н8	119.7
С4—С3—Н3А	109.5	С7—С8—Н8	119.7
С2—С3—НЗА	109.5	C8—C9—C10	120.44 (16)

C4—C3—H3B	109.5	C8—C9—Cl1	118.80 (14)
С2—С3—Н3В	109.5	C10-C9-Cl1	120.75 (14)
НЗА—СЗ—НЗВ	108.1	C11—C10—C9	119.28 (16)
C3—C4—S2	110.86 (13)	C11—C10—Cl2	119.71 (14)
C3—C4—H4A	109.5	C9—C10—Cl2	121.02 (14)
S2—C4—H4A	109.5	C12-C11-C10	120.12 (17)
C3—C4—H4B	109.5	C12-C11-H11	119.9
S2—C4—H4B	109.5	C10-C11-H11	119.9
H4A—C4—H4B	108.1	C11—C12—C7	121.16 (17)
N1—C5—C7	108.84 (14)	C11—C12—H12	119.4
N1—C5—C6	110.40 (14)	С7—С12—Н12	119.4
C7—C5—C6	115.16 (15)		
C2-N1-C1-S1	-174.57 (13)	C6—C5—C7—C8	17.1 (2)
C5—N1—C1—S1	1.7 (2)	N1C5C7C12	-41.1 (2)
C2—N1—C1—S2	7.3 (2)	C6—C5—C7—C12	-165.64 (16)
C5—N1—C1—S2	-176.51 (12)	C12—C7—C8—C9	0.4 (3)
C4—S2—C1—N1	-2.87 (17)	C5—C7—C8—C9	177.67 (15)
C4—S2—C1—S1	178.74 (10)	C7—C8—C9—C10	0.6 (3)
C1—N1—C2—C3	-37.4 (2)	C7—C8—C9—Cl1	-179.05 (13)
C5—N1—C2—C3	146.26 (15)	C8—C9—C10—C11	-1.0 (3)
N1—C2—C3—C4	64.7 (2)	Cl1—C9—C10—C11	178.73 (13)
C2—C3—C4—S2	-58.89 (18)	C8—C9—C10—Cl2	178.77 (13)
C1—S2—C4—C3	28.40 (16)	Cl1—C9—C10—Cl2	-1.6 (2)
C1—N1—C5—C7	113.96 (17)	C9—C10—C11—C12	0.3 (3)
C2—N1—C5—C7	-69.49 (18)	Cl2—C10—C11—C12	-179.45 (14)
C1—N1—C5—C6	-118.73 (18)	C10-C11-C12-C7	0.7 (3)
C2—N1—C5—C6	57.82 (19)	C8—C7—C12—C11	-1.1 (3)
N1—C5—C7—C8	141.65 (16)	C5—C7—C12—C11	-178.40 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
C5—H5…S1	1.00	2.48	3.068 (2)	117

